Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632040

RESUMO

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.

2.
Environ Sci Pollut Res Int ; 31(8): 12406-12421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233708

RESUMO

There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigating their environmental risks. In addition, our results underline the importance of reporting non-significant effects and acknowledging individual variation in behavior for environmental risk assessment.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Lymnaea , Fluoxetina/toxicidade , Cloridrato de Venlafaxina/farmacologia , Ecossistema , Antidepressivos/farmacologia , Caramujos , Organismos Aquáticos , Locomoção , Água Doce , Poluentes Químicos da Água/toxicidade
3.
J Environ Manage ; 348: 119163, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827081

RESUMO

Healthy freshwater ecosystems can provide vital ecosystem services (ESs), and this capacity may be hampered due to water quality deterioration and climate change. In the currently available ES modeling tools, ecosystem processes are either absent or oversimplified, hindering the evaluation of impacts of restoration measures on ES provisioning. In this study, we propose an ES modeling tool that integrates lake physics, ecology and service provisioning into a holistic modeling framework. We applied this model to a Dutch quarry lake, to evaluate how nine ESs respond to technological-based (phosphorus (P) reduction) and nature-based measures (wetland restoration). As climate change might be affecting the future effectiveness of restoration efforts, we also studied the climate change impacts on the outcome of restoration measures and provisioning of ESs, using climate scenarios for the Netherlands in 2050. Our results indicate that both phosphorus reduction and wetland restoration mitigated eutrophication symptoms, resulting in increased oxygen concentrations and water transparency, and decreased phytoplankton biomass. Delivery of most ESs was improved, including swimming, P retention, and macrophyte habitat, whereas the ES provisioning that required a more productive system was impaired (sport fishing and bird watching). However, our modeling results suggested hampered effectiveness of restoration measures upon exposure to future climate conditions, which may require intensification of restoration efforts in the future to meet restoration targets. Importantly, ESs provisioning showed non-linear responses to increasing intensity of restoration measures, indicating that effectiveness of restoration measures does not necessarily increase proportionally. In conclusion, the ecosystem service modeling framework proposed in this study, provides a holistic evaluation of lake restoration measures on ecosystem services provisioning, and can contribute to development of climate-robust management strategies.


Assuntos
Ecossistema , Lagos , Mudança Climática , Ecologia , Fósforo/análise
4.
Water Res ; 244: 120391, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544119

RESUMO

The eutrophic Bouvigne pond (Breda, The Netherlands) regularly suffers from cyanobacterial blooms. To improve the water quality, the external nutrient loading and the nutrient release from the pond sediment have to be reduced. An enclosure experiment was performed in the pond between March 9 and July 29, 2020 to compare the efficiency of dredging, addition of the lanthanum-modified bentonite clay Phoslock® (LMB), the aluminum-modified zeolite Aqual-P™ (AMZ) and FeCl2 to mitigate nutrient release from the sediment. The treatments improved water quality. Mean total phosphorus (TP) concentrations in water were 0.091, 0.058, 0.032, 0.031, and 0.030 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treated enclosures, respectively. Mean filterable P (FP) concentrations were 0.056, 0.010, 0.009, 0.005, and 0.005 mg P L-1 in controls, dredged, FeCl2, LMB and AMZ treatments, respectively. Total nitrogen (TN) and dissolved inorganic nitrogen (DIN) were similar among treatments; lanthanum was elevated in LMB treatments, Fe and Cl in FeCl2 treatments, and Al and Cl in AMZ treatments. After 112 days, sediment was collected from each enclosure, and subsequent sequential P extraction revealed that the mobile P pool in the sediments had reduced by 71.4%, 60.2%, 38%, and 5.2% in dredged, AMZ, LMB, and FeCl2 treatments compared to the controls. A sediment core incubation laboratory experiment done simultaneously with the enclosure experiment revealed that FP fluxes were positive in controls and cores from the dredged area, while negative in LMB, AMZ and FeCl2 treated cores. Dissolved inorganic nitrogen (DIN) release rate in LMB treated cores was 3.6 times higher than in controls. Overall, the applied in-lake treatments improved water quality in the enclosures. Based on this study, from effectiveness, application, stakeholders engagement, costs and environmental safety, LMB treatment would be the preferred option to reduce the internal nutrient loading of the Bouvigne pond, but additional arguments also have to be considered when preparing a restoration.


Assuntos
Poluentes Químicos da Água , Zeolitas , Bentonita , Alumínio , Lantânio , Fósforo , Lagos , Nutrientes , Sedimentos Geológicos , Eutrofização , Poluentes Químicos da Água/análise
5.
Harmful Algae ; 118: 102311, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195425

RESUMO

Numerous products and techniques are used to combat harmful cyanobacterial blooms in lakes. In this study, we tested nine products, the phosphate binders Phoslock® and Aqual-PTM, the coagulant chitosan, the phosphorus binder and coagulant aluminum salts (aluminum sulphate and sodium aluminate), the copper-based algicides SeClear, Captain® XTR and CuSO4·5H2O, the antibiotic Streptomycin and the oxidant hydrogen peroxide (H2O2) on their efficiency to manage the cyanobacterium Microcystis aeruginosa (M. aeruginosa). To this end, 7 days of laboratory experiments were conducted and effects were determined on chlorophyll-a, photosystem II efficiency (PSII), soluble reactive phosphorus (SRP) and intracellular and extracellular microcystin (MC) concentrations. The algicides, chitosan and H2O2 were the most powerful in reducing cyanobacteria biomass. Biomass reductions compared to the controls yielded: Chitosan (99.8%) > Hydrogen peroxide (99.6%) > Captain XTR (98.2%) > SeClear (98.1%) > CuSO4·5H2O (97.8%) > Streptomycin (86.6%) > Phoslock® (42.6%) > Aqual-PTM (28.4%) > alum (5.5%). Compounds that caused the largest reductions in biomass also strongly lowered photosystem II efficiency, while the other compounds (Phoslock®, Aqual-PTM, aluminum salts) had no effect on PSII, but strongly reduced SRP. Intracellular MC concentration followed the biomass patterns, extracellular MC was generally lower at higher doses of algicides, chitosan and H2O2 after one week. Recovery of PSII was observed in most algicides and chitosan, but not at the highest doses of SeClear and in all streptomycin treatments. Our results revealed that M. aeruginosa can be killed rapidly using several compounds, that in some treatments already signs of recovery occurred within one week. P fixatives are efficient in reducing SRP, and thus acting via resource suppression, which potentially may provide an addition to fast-acting algicides that kill most of the cells, but allow rapid regrowth as sufficient nutrients remain.


Assuntos
Quitosana , Cianobactérias , Herbicidas , Microcystis , Alumínio/farmacologia , Antibacterianos/farmacologia , Quitosana/farmacologia , Clorofila , Cobre/farmacologia , Fixadores/farmacologia , Herbicidas/farmacologia , Peróxido de Hidrogênio , Microcistinas/farmacologia , Oxidantes/farmacologia , Fosfatos , Fósforo/farmacologia , Complexo de Proteína do Fotossistema II , Sais/farmacologia , Estreptomicina/farmacologia , Sulfatos/farmacologia
6.
Ecotoxicol Environ Saf ; 241: 113817, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068746

RESUMO

In this study, the effects of traditional copper (CuSO4.5H2O) and novel copper algaecides (Captain XTR, SeClear and Lake Guard Blue) were tested on Daphnia magna under acute (48 h) and chronic (21 d) exposure scenarios. The EC50 values calculated in the acute tests were between 0.5 and 0.6 mg Cu L-1 for all four compounds. Lake Guard Blue and CuSO4.5 H2O were more toxic than SeClear and Captain XTR. During the chronic test, the effects of SeClear (EC50: 0.274 mg Cu L-1) on reproduction and body length were larger than the effects of the other three copper-based algaecides (EC50: 0.436 mg Cu L-1 for CuSO4.5 H2O, 0.498 mg Cu L-1 for Captain XTR, and 0.295 mg Cu L-1 for Lake Guard Blue). Captain XTR had the strongest negative effect on body weight, whereas body weight was affected the least by CuSO4.5 H2O. The four copper compounds affected the age at first brood significantly, which was delayed by 1.8, 2.0, 2.3 and 3.2 days for Captain XTR, CuSO4.5H2O, Lake Guard Blue and SeClear, respectively. Intrinsic rate of population increase was lowest (0.145 d-1) at the highest dosage in the SeClear treatments. Chemical equilibrium modelling revealed that most copper was chelated with EDTA present in the artificial medium used. These combined results indicate that the toxicity of the novel copper algaecide SeClear to D. magna is greater than that of traditional copper algaecide. Prior to each Cu application, tests on the effects of Cu compounds on the organisms being targeted should be done, taking into consideration the water chemistry.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Peso Corporal , Cobre/análise , Daphnia , Herbicidas/toxicidade , Lagos , Poluentes Químicos da Água/análise
7.
Water Res ; 223: 118934, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058095

RESUMO

The anomalous past two years of the COVID-19 pandemic have been a test of human response to global crisis management as typical human activities were significantly altered. The COVID-instigated anthropause has illustrated the influence that humans and the biosphere have on each other, especially given the variety of national mobility interventions that have been implemented globally. These local COVID-19-era restrictions influenced human-ecosystem interactions through changes in accessibility of water systems and changes in ecosystem service demand. Four urban aquatic case studies in the Netherlands demonstrated shifts in human demand during the anthropause. For instance, reduced boat traffic in Amsterdam canals led to improved water clarity. In comparison, ongoing service exploitation from increased recreational fishing, use of bathing waters and national parks visitation are heightening concerns about potential ecosystem degradation. We distilled management lessons from both the case studies as well as from recent literature pertaining to ecological intactness and social relevance. Equally important to the lessons themselves, however, is the pace at which informed management practices are established after the pandemic ends, particularly as many communities currently recognize the importance of aquatic ecosystems and are amenable to their protection.


Assuntos
COVID-19 , Ecossistema , Humanos , Países Baixos , Pandemias , Água
8.
Harmful Algae ; 117: 102262, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944948

RESUMO

One of the main symptoms of eutrophication is the proliferation of phytoplankton biomass, including nuisance cyanobacteria. Reduction of the external nutrient load is essential to control eutrophication, and in-lake interventions are suggested for mitigating cyanobacterial blooms to accelerate ecosystem recovery. Floc & Sink (F&S) is one such intervention technique that consists of applying a low dose of coagulants in combination with ballasts for removing cyanobacteria biomass. It is especially suitable for deep lakes with an external nutrient load that is higher than the internal load and suffers from perennial cyanobacterial bloom events. Studies showing the efficacy of the F&S technique have been published, but those testing its variation in efficacy with changes in the environmental conditions are still scarce. Therefore, we evaluated the efficiency of the F&S technique to remove cyanobacteria from water samples collected monthly from two different sites in a deep tropical reservoir (Funil Reservoir, Brazil) in the laboratory. We tested the efficacy of two coagulants, chitosan (CHI) and poly-aluminum chloride (PAC), alone and in combination with lanthanum-modified bentonite (LMB) in settling phytoplankton biomass. We hypothesized that: ⅰ) the combined treatments are more effective in removing the algal biomass and ⅱ) the efficiency of F&S treatments varies spatially and monthly due to changes in environmental conditions. The combined treatments (PAC + LMB or CHI + LMB) removed up to seven times more biomass than single treatments (PAC, CHI, or LMB). Only the treatments CHI and LMB + CHI differed in efficiency between the sites, although all treatments showed significant variation in efficiency over the months at both the sampling sites. The combined treatments exhibited lower removal efficacy during the warm-rainy months (October-March) than during the mild-cold dry months (April-September). At high pH (pH > 10), the efficiency of the CHI and LMB + CHI treatments decreased. CHI had lower removal efficiency when single-cell cyanobacteria were abundant, while the combined treatments were equally efficient regardless of the morphology of the cyanobacteria. Hence, the combination of PAC as a coagulant with a ballast LMB is the most effective technique to precipitate cyanobacteria under the conditions that are encountered around the year in this tropical reservoir.


Assuntos
Cianobactérias , Ecossistema , Bentonita/farmacologia , Eutrofização , Lagos , Fitoplâncton
9.
Sci Total Environ ; 847: 157584, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882339

RESUMO

Freshwater ecosystems are an important source of the greenhouse gas methane (CH4), and their emissions are expected to increase due to eutrophication. Two commonly applied management techniques to reduce eutrophication are the addition of phosphate-binding lanthanum modified bentonite (LMB, trademark Phoslock©) and dredging, but their effect on CH4 emissions is still poorly understood. Here, this study researched how LMB and dredging affected CH4 emissions using a full-factorial mesocosm design monitored for 18 months. The effect was tested by measuring diffusive and ebullitive CH4 fluxes, plant community composition, methanogen and methanotroph activity and community composition, and a range of physicochemical water and sediment variables. LMB addition decreased total CH4 emissions, while dredging showed a trend towards decreasing CH4 emissions. Total CH4 emissions in all mesocosms were much higher in the summer of the second year, likely because of higher algal decomposition and organic matter availability. First, LMB addition lowered CH4 emissions by decreasing P-availability, which reduced coverage of the floating fern Azolla filiculoides, and thereby prevented anoxia and decreased surface water NH4+ concentrations, lowering CH4 production rates. Second, dredging decreased CH4 emissions in the first summer, possibly it removed the methanogenic community, and in the second year by preventing autumn and winter die-off of the rooted macrophyte Potamogeton cripsus. Finally, methanogen community composition was related to surface water NH4+ and O2, and porewater total phosphorus, while methanotroph community composition was related to organic matter content. To conclude, LMB addition and dredging not only improve water quality, but also decrease CH4 emissions, mitigating climate change.


Assuntos
Gases de Efeito Estufa , Lagos , Bentonita , Ecossistema , Lagos/química , Lantânio , Metano/análise , Fosfatos , Fósforo/análise
11.
J Environ Manage ; 314: 115036, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421721

RESUMO

Bioturbation by omni-benthivorous fish often causes sediment resuspension and internal nutrient loading, which boosts phytoplankton growth and may lead to a shift of clear water lakes to a turbid state. Removal of large-sized omni-benthivorous individuals is a lake restoration measure that may revert lakes from a turbid to a clear water state, yet the rapid reproduction of small omni-benthivorous fish in tropical and subtropical shallow lakes may impede such lake recovery. In lake restoration, also a combination of lanthanum-modified bentonite (LMB) and planting submerged macrophytes has been used that may synergistically improve lake water quality. How the combined effect works in the presence of small omni-benthivorous fish has not been studied, which is needed given the high abundances of small omni-benthivorous fish in (sub)tropical lakes. We conducted a two-by-two factorial mesocosm experiment with and without the submerged macrophytes Vallisneria natans and with and without LMB, all in the presence of small crucian carp. At the end of the experiment, turbidity in the V. natans, LMB and combined LMB + V. natans treatments had decreased by 0.8%, 30.3% and 30.9%, respectively, compared with the controls. In addition, the nitrogen (N) and phosphorus (P) release from the sediment in the combined LMB + V. natans treatments had decreased substantially, by 97.4% and 94.3%, respectively, compared with the control. These N and P fluxes were also significantly lower in the combined LMB + V. natans treatments than in the sole LMB treatment (88.1% and 82.3%) or the V. natans treatment (93.2% and 90.3%). Cyanobacteria in the overlying water in the combined LMB + V. natans treatments significantly decreased by 84.1%, 63.5% and 37.0%, respectively, compared with the control and the sole LMB and V. natans treatments. Our results show that LMB and submerged macrophytes complement each other in effectively improving the water quality, even in the presence of small omni-benthivorous fish.


Assuntos
Carpas , Qualidade da Água , Animais , Bentonita , Lagos , Lantânio , Fósforo/análise
12.
Toxins (Basel) ; 14(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35324711

RESUMO

The Vietnamese Mekong Delta is predicted to be one of the regions most impacted by climate change, causing increased temperature and salinity in inland waters. We hypothesized that the increase in temperature and salinity may impact the microcystin (MC) production of two Microcystis strains isolated in this region from a freshwater pond (strain MBC) and a brackish water pond (strain MTV). The Microcystis strains were grown at low (27 °C), medium (31 °C), high (35 °C) and extremely high (37 °C) temperature in flat photobioreactors (Algaemist). At each temperature, when cultures reached a stable state, sea salt was added to increase salinity to 4‱, 8‱, 12‱ and 16‱. MC concentrations and cell quota were reduced at high and extremely high temperatures. Salinity, in general, had comparable effects on MC concentrations and quota. At a salinity of 4‱ and 8‱, concentrations of MC per mL of culture and MC cell quota (based on chlorophyll, dry-weight and particle counts) were higher than at 0.5‱, while at the highest salinities (12‱ and 16‱) these were strongly reduced. Strain MBC produced five MC variants of which MC-RR and MC-LR were most abundant, followed by MC-YR and relatively low amounts of demethylated variants dmMC-RR and dmMC-LR. In strain MTV, MC-RR was most abundant, with traces of MC-YR and dmMC-RR only in cultures grown at 16‱ salinity. Overall, higher temperature led to lower MC concentrations and cell quota, low salinity seemed to promote MC production and high salinity reduced MC production. Hence, increased temperature and higher salinity could lead to less toxic Microcystis, but since these conditions might favour Microcystis over other competitors, the overall biomass gain could offset a lower toxicity.


Assuntos
Microcystis , Água Doce , Microcistinas , Lagoas , Salinidade
13.
Sci Total Environ ; 828: 154421, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278546

RESUMO

Harmful algal blooms are symptomatic of eutrophication and lead to deterioration of water quality and ecosystem services. Extreme climatic events could enhance eutrophication resulting in more severe nuisance algal blooms, while they also may hamper current restoration efforts aimed to reduce nutrient loads. Evaluation of restoration measures on their efficacy under climate change is essential for effective water management. We conducted a two-month mesocosm experiment in a hypertrophic urban canal focussing on the reduction of sediment phosphorus (P)-release. We tested the efficacy of four interventions, measuring phytoplankton biomass, nutrients in water and sediment. The measures included sediment dredging, water column aeration and application of P-sorbents (lanthanum-modified bentonite - Phoslock® and iron-lime sludge, a by-product from drinking water production). An extreme heatwave (with the highest daily maximum air temperature up to 40.7 °C) was recorded in the middle of our experiment. This extreme heatwave was used for the evaluation of heatwave-induced impacts. Dredging and lanthanum modified bentonite exhibited the largest efficacy in reducing phytoplankton and cyanobacteria biomass and improving water clarity, followed by iron-lime sludge, whereas aeration did not show an effect. The heatwave negatively impacted all four measures, with increased nutrient releases and consequently increased phytoplankton biomass and decreased water clarity compared to the pre-heatwave phase. We propose a conceptual model suggesting that the heatwave locks nutrients within the biological P loop, which is the exchange between labile P and organic P, while the P fraction in the chemical P loop will be decreased. As a consequence, the efficacy of chemical agents targeting P-reduction by chemical binding will be hampered by heatwaves. Our study indicates that current restoration measures might be challenged in a future with more frequent and intense heatwaves.


Assuntos
Bentonita , Qualidade da Água , Ecossistema , Eutrofização , Ferro , Lagos , Lantânio , Fósforo , Fitoplâncton , Esgotos
14.
Sci Total Environ ; 812: 151489, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742988

RESUMO

Phosphorus sorbents (PS) are viewed as a powerful tool to manage eutrophication. Here, we tested three commercially available PS - lanthanum-modified bentonite (LMB), aluminium-modified zeolite (AMZ) and aluminium salts (Al) on their capacity to chemically inactivate soluble reactive phosphorus (SRP) at six different temperatures (5 to 35 °C) and five pH values (6 to 10). We also evaluated if the SRP bound at a neutral pH would be released if pH increases to pH 10. Results showed that temperature affected the SRP binding behavior differently for each PS. For instance, the highest SRP binding capacities of LMB, AMZ and Al were 14.0, 29.9 and 251.1 mg P g-1 at 30 °C, 35 °C and 30 °C, respectively; and the lowest was at 35 °C for LMB, 25 °C for AMZ and 20 °C for Al (6.3, 4.0 and 205.2 mg P g-1, respectively). The pH also affected the SRP binding differently. When pH increased from pH 6 to pH 10, LMB and Al decreased their binding capacity from 10.0 to 4.9 and from 571.7 mg P g-1 to 21.3 mg P g-1, respectively. The SRP adsorption capacity of AMZ was similar at pH 7 and 10 (6.3 and 6.2 mg P g-1). We observed that in high pH, LMB did not release the SRP precipitated. In contrast, AMZ and Al desorbed around 39%, and 71% of the SRP adsorbed when pH changed from 7 to 10. Abiotic factors such as pH should be considered when selecting the most promising material in lake restoration.


Assuntos
Lagos , Fosfatos , Eutrofização , Concentração de Íons de Hidrogênio , Lantânio , Fósforo , Temperatura
15.
Toxins (Basel) ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34200982

RESUMO

Combining coagulants with ballast (natural soil or modified clay) to remove cyanobacteria from the water column is a promising tool to mitigate nuisance blooms. Nevertheless, the possible effects of this technique on different toxin-producing cyanobacteria species have not been thoroughly investigated. This laboratory study evaluated the potential effects of the "Floc and Sink" technique on releasing microcystins (MC) from the precipitated biomass. A combined treatment of polyaluminium chloride (PAC) with lanthanum modified bentonite (LMB) and/or local red soil (LRS) was applied to the bloom material (mainly Dolichospermum circinalis and Microcystis aeruginosa) of a tropical reservoir. Intra and extracellular MC and biomass removal were evaluated. PAC alone was not efficient to remove the biomass, while PAC + LMB + LRS was the most efficient and removed 4.3-7.5 times more biomass than other treatments. Intracellular MC concentrations ranged between 12 and 2.180 µg L-1 independent from the biomass. PAC treatment increased extracellular MC concentrations from 3.5 to 6 times. However, when combined with ballast, extracellular MC was up to 4.2 times lower in the top of the test tubes. Nevertheless, PAC + LRS and PAC + LMB + LRS treatments showed extracellular MC concentration eight times higher than controls in the bottom. Our results showed that Floc and Sink appears to be more promising in removing cyanobacteria and extracellular MC from the water column than a sole coagulant (PAC).


Assuntos
Hidróxido de Alumínio/química , Bentonita/química , Cianobactérias , Lantânio/química , Microcistinas/química , Solo/química , Poluentes da Água/química , Purificação da Água/métodos , Clorofila A/análise , Floculação , Abastecimento de Água
16.
PLoS One ; 16(4): e0249720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33844703

RESUMO

The massive growth of potentially toxic cyanobacteria in water supply reservoirs, such as Legedadi Reservoir (Ethiopia), poses a huge burden to water purification units and represents a serious threat to public health. In this study, we evaluated the efficiency of the flocculants/coagulants chitosan, Moringa oleifera seed (MOS), and poly-aluminium chloride (PAC) in settling cyanobacterial species present in the Legedadi Reservoir. We also tested whether coagulant-treated reservoir water promotes cyanobacteria growth. Our data showed that suspended solids in the turbid reservoir acted as ballast, thereby enhancing settling and hence the removal of cyanobacterial species coagulated with chitosan, Moringa oleifera seed, or their combination. Compared to other coagulants, MOS of 30 mg/L concentration, with the removal efficiency of 93.6%, was the most effective in removing cyanobacterial species without causing cell lysis. Contrary to our expectation, PAC was the least effective coagulant. Moreover, reservoir water treated with MOS alone or MOS combined with chitosan did not support any growth of cyanobacteria during the first two weeks of the experiment. Our data indicate that the efficacy of a flocculant/coagulant in the removal of cyanobacteria is influenced by the uniqueness of individual lakes/reservoirs, implying that mitigation methods should consider the unique characteristic of the lake/reservoir.


Assuntos
Quitosana/química , Cianobactérias/isolamento & purificação , Lagos/microbiologia , Moringa oleifera/química , Purificação da Água/métodos , Abastecimento de Água/métodos , Etiópia , Floculação , Lagos/análise , Sementes
17.
Sci Total Environ ; 769: 144294, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486172

RESUMO

Intense sand and gravel mining has created numerous man-made lakes around the world in the past century. These small quarry lakes (1-50 ha) are usually hydrologically isolated, often deep (6-40 m) and stratify during summer and in cold winters. Due to their small size, these deep man-made lakes are usually not included in the regular monitoring campaigns, e.g. as required for the European Water Framework Directive (WFD). Therefore, not much is known about the ecological functioning of these novel ecosystems. During two summers, we determined the macrophyte diversity and measured a range of physico-chemical and biological parameters in 51 quarry lakes in the catchment area of the rivers Meuse and Rhine. We compared the results of this campaign to the chemical and macrophyte sampling as performed for the WFD in the immediate surrounding shallow standing waters. Alpha (local) and beta diversity (regional), and local contribution to beta diversity were calculated for the whole region of which beta diversity was further partitioned into a true species replacement and richness difference component. Quarry lakes contain higher water quality reflected by lower nutrient and chlorophyll-a concentration compared with shallow water bodies. Additionally, quarry lakes contribute significantly to the regional macrophyte diversity pool by harboring distinctly different macrophyte communities (beta diversity - replacement). Specifically quarry lakes with a total phosphorus concentration in the water column below 35 µg P/l contribute most to beta diversity among quarry lakes. Novel ecosystems such as deep quarry lakes are often perceived as less valuable ecosystems, with strong implications regarding their management. Our results show that quarry lakes are in general of better chemical and biological quality compared with shallow standing waters. We therefore call for a more integrated assessment of the quality of quarry lakes and corresponding management strategy of these waters by water managers.

18.
Photochem Photobiol ; 97(4): 753-762, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33394510

RESUMO

High temperature can promote cyanobacterial blooms, whereas ultraviolet radiation (UVR) can potentially depress cyanobacterial growth by damaging their photosynthetic apparatus. Although the damaging effect of UVR has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria remain scarce. To better understand the combined effects of temperature and UVR on cyanobacteria, two strains of nuisance species, Microcystis aeruginosa (MIRF) and Raphidiopsis raciborskii (formerly Cylindrospermopsis raciborskii, CYRF), were grown at 24°C and 28°C and were daily exposed to UVA + UVB (PAR + UVA+UVB) or only UVA (PAR + UVA) radiation. MIRF and CYRF growth rates were most affected by PAR + UVA+UVB treatment and to a lesser extent by the PAR + UVA treatment. Negative UVR effects on growth, Photosystem II (PSII) efficiency and photosynthesis were pronounced at 24°C when compared to that at 28°C. Our results showed a cumulative negative effect on PSII efficiency in MIRF, but not in CYRF. Hence, although higher temperature ameliorates UVR damage, interspecific differences may lead to deviating impacts on different species, and combined elevated temperature and UVR stress could influence species competition.


Assuntos
Cianobactérias , Microcystis , Cylindrospermopsis , Fotossíntese , Complexo de Proteína do Fotossistema II , Temperatura , Raios Ultravioleta
19.
Toxins (Basel) ; 12(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167347

RESUMO

The combination of a low-dose coagulant (polyaluminium chloride-'Floc') and a ballast able to bind phosphate (lanthanum modified bentonite, LMB-'Sink/Lock') have been used successfully to manage cyanobacterial blooms and eutrophication. In a recent 'Floc and Lock' intervention in Lake de Kuil (the Netherlands), cyanobacterial chlorophyll-a was reduced by 90% but, surprisingly, after one week elevated cyanobacterial concentrations were observed again that faded away during following weeks. Hence, to better understand why and how to avoid an increase in cyanobacterial concentration, experiments with collected cyanobacteria from Lakes De Kuil and Rauwbraken were performed. We showed that the Planktothrix rubescens from Lake de Kuil could initially be precipitated using a coagulant and ballast but, after one day, most of the filaments resurfaced again, even using a higher ballast dose. By contrast, the P. rubescens from Lake Rauwbraken remained precipitated after the Floc and Sink/Lock treatment. We highlight the need to test selected measures for each lake as the same technique with similar species (P. rubescens) yielded different results. Moreover, we show that damaging the cells first with hydrogen peroxide before adding the coagulant and ballast (a 'Kill, Floc and Lock/Sink' approach) could be promising to keep P. rubescens precipitated.


Assuntos
Hidróxido de Alumínio/química , Bentonita/química , Proliferação Nociva de Algas , Peróxido de Hidrogênio/química , Lagos/microbiologia , Lantânio/química , Purificação da Água , Precipitação Química , Clorofila A/metabolismo , Planktothrix/crescimento & desenvolvimento , Planktothrix/isolamento & purificação , Planktothrix/metabolismo , Fatores de Tempo , Microbiologia da Água
20.
Toxins (Basel) ; 12(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182627

RESUMO

Chitosan has been tested as a coagulant to remove cyanobacterial nuisance. While its coagulation efficiency is well studied, little is known about its effect on the viability of the cyanobacterial cells. This study aimed to test eight strains of the most frequent bloom-forming cyanobacterium, Microcystis aeruginosa, exposed to a realistic concentration range of chitosan used in lake restoration management (0 to 8 mg chitosan L-1). We found that after 1 h of contact with chitosan, in seven of the eight strains tested, photosystem II efficiency was decreased, and after 24 h, all the strains tested were affected. EC50 values varied from 0.47 to > 8 mg chitosan L-1 between the strains, which might be related to the amount of extracellular polymeric substances. Nucleic acid staining (Sytox-Green®) illustrated the loss of membrane integrity in all the strains tested, and subsequent leakage of pigments was observed, as well as the release of intracellular microcystin. Our results indicate that strain variability hampers generalization about species response to chitosan exposure. Hence, when used as a coagulant to manage cyanobacterial nuisance, chitosan should be first tested on the natural site-specific biota on cyanobacteria removal efficiency, as well as on cell integrity aspects.


Assuntos
Quitosana/toxicidade , Microcystis/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quitosana/química , Clorofila A/metabolismo , Floculação , Microcistinas/metabolismo , Microcystis/química , Microcystis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...